Lista de probleme 31

Filtrare

PatratMagic4 C++

#3332

Să se scrie o funcție care primește ca parametru un număr natural c și returnează numărul de ordine al pătratului magic cu constanta c, dacă există.

Șirul lui Fibonacci este definit astfel:

$$ F_n = \begin{cases}
1& \text{dacă } n = 1 \text{ sau } n = 2 ,\\
F_{n-1} + F_{n-2} & \text{dacă } n > 2.
\end{cases} $$

Se dă un număr natural n. Determinați al n-lea termen al șirului, modulo 666013.

Determinați cea de-a \(N\)-a permutare a numerelor \(1,2,… P\) atunci cand aceste permutari sunt generate în ordine lexicografică.

secvDiv

#3509

Aflați câte subsecvențe de cifre din s formează numere divizibile cu n.

sidon

#3546

Dorel şi consătenii lui, fiind în perioada de alertă, s-au aşezat la rând la magazin. Fiecare avea la el o sumă diferită de bani şi, mai mult, sumele de bani ale secvenţelor de oameni din rând erau diferite oricare două.
Aflaţi ce sumă de bani avea fiecare sătean la el.

xorsum

#3556

Se dau numerele naturale n, x, y, z, t. Se generează vectorul a astfel: a[i] = (a[i-1] * x + y) % z, pentru 1 ≤ i ≤ n si a[i] = 0 pentru i = 0. Determinați ∑(a[i] XOR a[j]), unde 1 ≤ i < j ≤ n, modulo t.

Al

#3785

Al Bundy a plecat la serviciu, lăsându-i soţiei lui, Peg, cardul de cumpărături. PIN-ul este valoarea expresiei \(E\left ( n \right )=\sum_{k = 1}^{n}\left ( 2\cdot \left ( a^{2}+b^{2} \right )^{\frac{k}{2}}\cdot cos\left ( k\cdot \alpha \right ) \right ),\ \)unde \(\ \alpha =arctg\left ( \frac{a}{b} \right ) \), iar n, a, b sunt numere naturale nenule.

Se consideră o matrice cu n linii şi n coloane şi elemente egale cu 0 sau 1. Să se calculeze determinantul matricei.

Se dau n numere întregi, \( a_{1}, a_{2}, …, a_{n} \).

Calculați valoarea determinantului \( \begin{vmatrix}
1 & 1 & 1 & … & 1 & 1\\
a_{1} & a_{2} & a_{3} & … & a_{n-1} & a_{n}\\
a_{1}^{2} & a_{2}^{2} & a_{3}^{2} & … & a_{n-1}^{2} & a_{n}^{2}\\
… & … & … & … & … & …\\
a_{1}^{n-2} & a_{2}^{n-2} & a_{3}^{n-2} & … & a_{n-1}^{n-2} & a_{n}^{n-2}\\
a_{1}^{n-1} & a_{2}^{n-1} & a_{3}^{n-1} & … & a_{n-1}^{n-1} & a_{n}^{n-1}
\end{vmatrix} \).

Într-o şcoală sunt F fete şi B băieţi. Pentru fiecare valoare a lui K de la 1 la F+B, aflaţi în câte moduri se poate alcătui o echipă formată din K elevi, care să conţină un număr impar de fete.

Du-te sus!